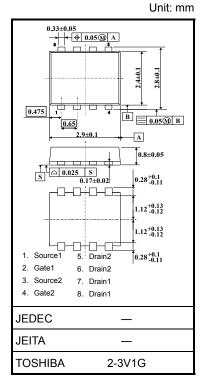
TOSHIBA Field Effect Transistor Silicon P, N Channel MOS Type (U-MOS IV / U-MOS III)

TPCP8403

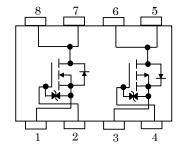
Portable Equipment Applications Motor Drive Applications DC-DC Converter Applications

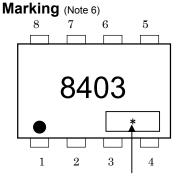
- Lead(Pb)-Free
- Low drain-source ON resistance: P Channel RDS (ON) = 55 mΩ (typ.)
 N Channel RDS (ON) = 31 mΩ (typ.)
- High forward transfer admittance : P Channel $\,|\,Y_{fs}\,| = 6.0\,\mathrm{S}$ (typ.) N Channel $\,|\,Y_{fs}\,| = 8.6\,\mathrm{S}$ (typ.)
- Low leakage current : P Channel IDSS = $-10~\mu A~(V_{DS} = -40~V)$ N Channel IDSS = $10~\mu A~(V_{DS} = 40~V)$
- Enhancement mode
 - : P Channel V_{th} = -0.8 to -2.0 V (V_{DS} = -10 V, I_D = -1mA) N Channel V_{th} = 1.3 to 2.5 V (V_{DS} = 10 V, I_D = 1mA)


Absolute Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rat	ting	Unit	
Drain-source voltage		V_{DSS}	-40	40	V	
Drain-gate vo	Itage (R _{GS} = 20 kΩ)	V_{DGR}	-40	40	V	
Gate-source v	voltage	V _{GSS}	±20	±20	V	
Drain	DC (Note 1)	ΙD	-3.4	4.7	Α	
current	Pulse (Note 1)	I _{DP}	-13.6	18.8	Α	
Drain power dissipation	Single-device operation (Note 3a)	P _{D (1)}	1.48	1.48		
(t = 5 s) (Note 2a)	Single-device value at dual operation (Note 3b)	P _{D (2)}	1.23	1.23	w	
Drain power dissipation (t = 5 s) (Note 2b)	Single-device operation (Note 3a)	P _{D (1)}	0.58	0.58	VV	
	Single-device value at dual operation (Note 3b)	P _{D (2)}	0.36	0.36		
Single pulse avalanche energy (Note 4)		E _{AS}	5.5	10.6	mJ	
Avalanche cu	rrent	I _{AR}	-3.4	4.7	Α	
Repetitive avalanche energy Single-device value at dual operation (Note 2a, 3b, 5)		E _{AR}	0.12		mJ	
Channel temperature		T _{ch}	150		°C	
Storage temperature range		T _{stg}	-55~150		°C	

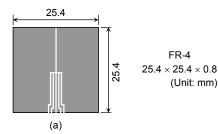
Note: For Notes 1 to 6, refer to the next page.

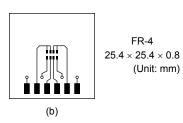

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).


This transistor is an electrostatic-sensitive device. Handle with caution.

Weight: 0.017 g (typ.)

Circuit Configuration




Lot No.

Thermal Characteristics

Chara	Symbol	Max	Unit		
Thermal resistance, channel to ambient (t = 5 s) (Note 2a)	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	84.5	°C/W	
	Single-device value at dual operation (Note 3b) Rth (ch-a) (2)		101.6	C/VV	
Thermal resistance, channel to ambient	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	215.5	°C/W	
(t = 5 s) (Note 2b)	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	347.2	C/VV	

- Note 1: The channel temperature should not exceed 150°C during use.
- Note 2: (a) Device mounted on a glass-epoxy board (b) Device mounted on a glass-epoxy board (b)

- Note 3: a) The power dissipation and thermal resistance values shown are for a single device. (During single-device operation, power is only applied to one device.)
 - The power dissipation and thermal resistance values shown are for a single device.
 (During dual operation, power is evenly applied to both devices.)
- Note 4: P Channel: $V_{DD}=25$ V, $T_{ch}=25^{\circ}$ C (initial), L = 0.5 mH, $R_{G}=25$ Ω , $I_{AR}=-3.4$ A N Channel: $V_{DD}=25$ V, $T_{ch}=25^{\circ}$ C (initial), L = 0.5 mH, $R_{G}=25$ Ω , $I_{AR}=4.7$ A
- Note 5: Repetitive rating: pulse width limited by maximum channel temperature
- Note 6: on the lower left of the marking indicates Pin 1.
 - Weekly code (3 digits):

Week of manufacture

(01 for the first week of the year, continuing up to 52 or 53)

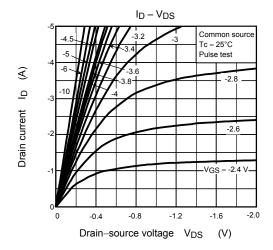
Year of manufacture

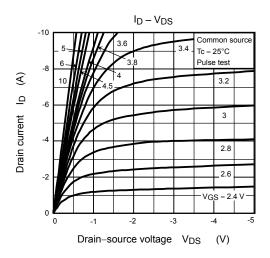
(The last digit of the calendar year)

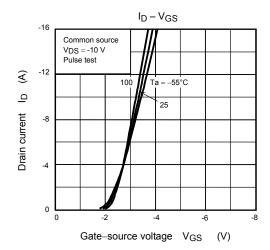
Electrical Characteristics (Ta = 25°C)

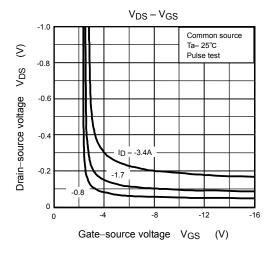
Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	μА
Drain cut-off curre	ent	I _{DSS}	$V_{DS} = -40 \text{ V}, V_{GS} = 0 \text{ V}$	_	_	10	μΑ
Drain-source breakdown voltage		V _{(BR) DSS}	$I_D = -10 \text{ mA}, V_{GS} = 0 \text{ V}$	-40	_	_	V
		V _{(BR) DSX}	$I_D = -10$ mA, $V_{GS} = 20$ V	-25	_	_	v
Gate threshold vo	oltage	V _{th}	$V_{DS} = -10 \text{ V}, I_D = -1 \text{ mA}$	-0.8	_	-2.0	V
Drain-source ON	rociotanos	Dec (cu)	$V_{GS} = -4.5 \text{ V}, I_D = -1.7 \text{ A}$	_	80	105	
Diain-source ON	resistance	R _{DS} (ON)	$V_{GS} = -10 \text{ V}, I_D = -1.7 \text{ A}$	_	55	70	mΩ
Forward transfer admittance		Y _{fs}	$V_{DS} = -10 \text{ V}, I_D = -1.7 \text{ A}$	3.0	6.0	_	S
Input capacitance	;	C _{iss}		_	680	_	
Reverse transfer capacitance		C _{rss}	$V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	_	80	_	pF
Output capacitance		Coss		_	100	_	
Switching time	Rise time	t _r	0 V	_	8.5	_	
	Turn-on time	t _{on}		_	16	_	
	Fall time	tf		_	16	_	ns
	Turn-off time	t _{off}	Duty ≦ 1%, t _W = 10 μs	_	120	_	
Total gate charge (gate-source plus gate-drain)		Qg	V _{DD} ≈ -32 V, V _{GS} = -10 V,	_	15	_	
Gate-source charge 1		Q _{gs1}	$I_D = -3.4 \text{ A}$	_	2	_	nC
Gate-drain ("miller") charge		Q _{gd}		_	3.5	_	

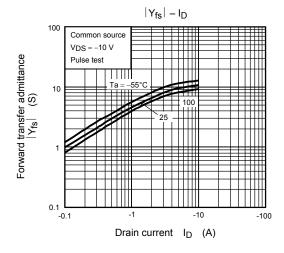
Source-Drain Ratings and Characteristics (Ta = 25°C)

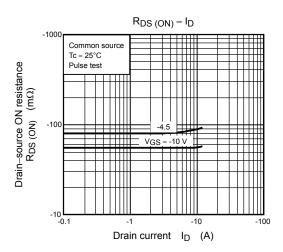

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	_	_	_	-13.6	Α
Forward voltage (diode)		V _{DSF}	$I_{DR} = -3.4 \text{ A}, V_{GS} = 0 \text{ V}$		_	1.2	V

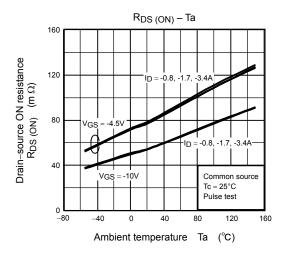

Electrical Characteristics (Ta = 25°C)

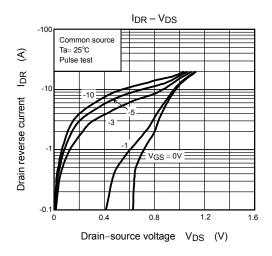

Cha	aracteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	V _{GS} = ±16 V, V _{DS} = 0 V	_	_	±10	μΑ
Drain cut-off curre	ent	I _{DSS}	V _{DS} = 40 V, V _{GS} = 0 V	_	_	10	μΑ
Drain-source brea	akdown	V (BR) DSS	I_D = 10 mA, V_{GS} = 0 V	40	_	_	V
voltage			$I_D = 10 \text{ mA}, V_{GS} = -20 \text{ V}$	15	_	_	٧
Gate threshold vo	oltage	V _{th}	V _{DS} = 10 V, I _D = 1 mA	1.3	_	2.5	٧
Drain-source ON	rosistanco	Pro (OLI)	$V_{GS} = 4.5 \text{ V}, I_D = 2.4 \text{ A}$		43	60	mΩ
Diain-source ON	resistance	R _{DS} (ON)	V _{GS} = 10 V, I _D = 2.4 A	_	31	40	
Forward transfer	admittance	Y _{fs}	V _{DS} = 10 V, I _D = 2.4 A	4.3	8.6	_	S
Input capacitance	;	C _{iss}		_	770	_	
Reverse transfer	Reverse transfer capacitance		V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	_	70	_	pF
Output capacitan	Output capacitance			_	105	_	
Switching time	Rise time	t _r	$V_{GS} = 2.4A$ $V_{GS} = 2.4A$ $V_{DC} = 2.4A$ $V_{DC} = 2.4A$ $V_{DD} = 2.4A$ $V_{DD} = 2.4A$ $V_{DD} = 2.4A$ $V_{DD} = 2.4A$	_	8	_	ns
	Turn-on time	t _{on}		_	15	_	
	Fall time	t _f		_	9	_	
	Turn-off time	t _{off}	Duty ≦ 1%, t _w = 10 μs	_	70	_	
Total gate charge (gate-source plus gate-drain)		Qg		_	16	_	
Gate-source charge 1		Q _{gs1}	$V_{DD} \approx 32 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 4.7 \text{ A}$	_	2.5	_	nC
Gate-drain ("mille	Gate-drain ("miller") charge				4		

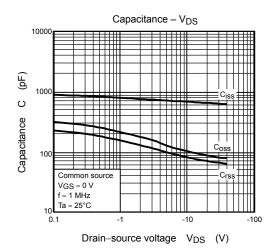

Source-Drain Ratings and Characteristics (Ta = 25°C)

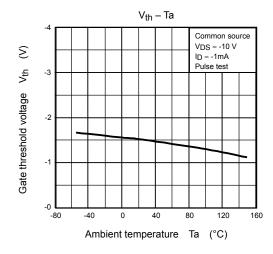

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	_		_	18.8	Α
Forward voltage (diode)		V_{DSF}	I _{DR} = 4.7 A, V _{GS} = 0 V	_	_	-1.2	V

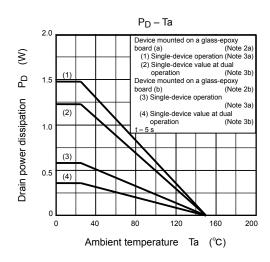


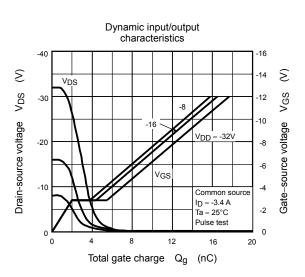


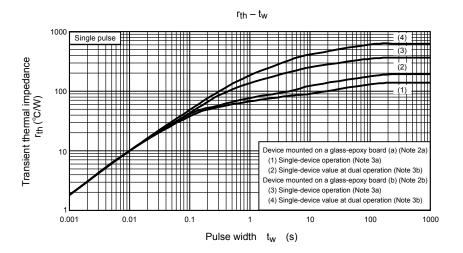


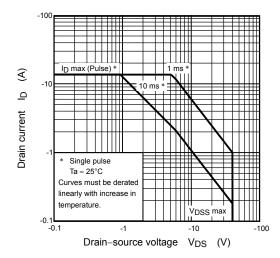


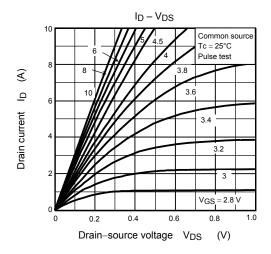


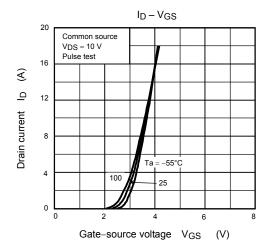


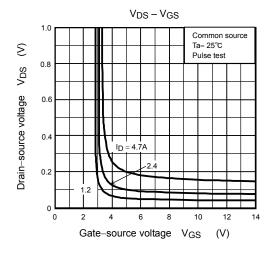


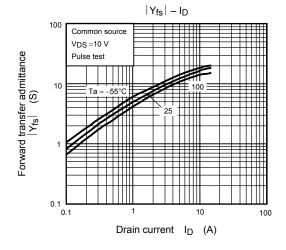


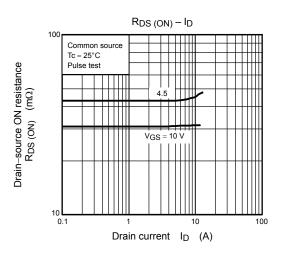


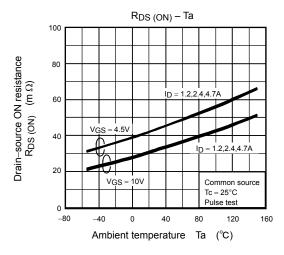


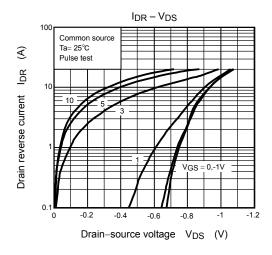


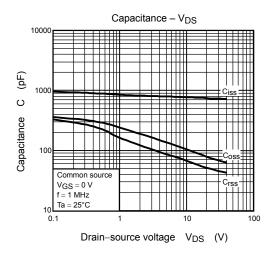

Safe operating area

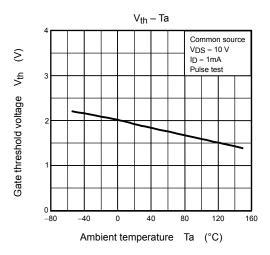


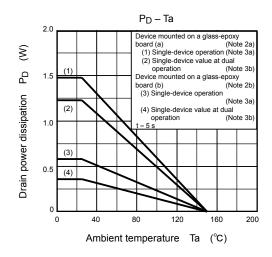


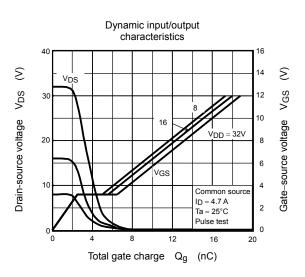


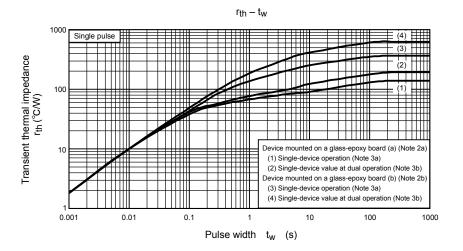


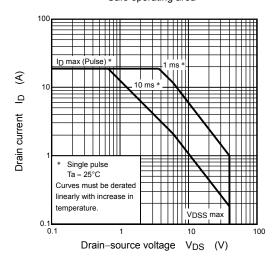












Safe operating area

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.